Toy nanoindentation model and incipient plasticity

نویسنده

  • L. L. Bonilla
چکیده

A toy model of two dimensional nanoindentation in finite crystals is proposed. The crystal is described by periodized discrete elasticity whereas the indenter is a rigid strain field of triangular shape representing a hard knife-like indenter. Analysis of the model shows that there are a number of discontinuities in the load vs penetration depth plot which correspond to the creation of dislocation loops. The stress vs depth bifurcation diagram of the model reveals multistable stationary solutions that appear as the dislocation-free branch of solutions develops turning points for increasing stress. Dynamical simulations show that an increment of the applied load leads to nucleation of dislocation loops below the nanoindenter tip. Such dislocations travel inside the bulk of the crystal and accommodate at a certain depth in the sample. In agreement with experiments, hysteresis is observed if the stress is decreased after the first dislocation loop is created. Critical stress values for loop creation and their final location at equilibrium are calculated. Email addresses: [email protected] (I. Plans), [email protected] (A. Carpio), [email protected] (L. L. Bonilla) Preprint submitted to Chaos, Solitons & Fractals March 8, 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incipient plasticity in 4H-SiC during quasistatic nanoindentation.

Silicon carbide (SiC) is an important orthopedic material due to its inert nature and superior mechanical and tribological properties. Some of the potential applications of silicon carbide include coating for stents to enhance hemocompatibility, coating for prosthetic-bearing surfaces and uncemented joint prosthetics. This study is the first to explore nanomechanical response of single crystal ...

متن کامل

Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

The study of dislocation nucleation in close-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic bcc metals using low index Ta single crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale informa...

متن کامل

ATOMISTIC EXPERIMENTAL AND SIMULATION STUDIES OF THE INCIPIENT PLASTIC DEFORMATION MECHANISMS AROUND NANOINDENTATIONS IN Au(001)

The nature and configuration of the dislocations generated during the incipient stages of plasticity in nanoindentations are still to a large extent unclear. In previous studies we have recognised and characterised by STM a number of novel surface defects in the surface of fcc metals generated by nanoindentation. We have analysed [1] the generation and kinetics of two types of dislocation confi...

متن کامل

Elastic criterion for dislocation nucleation

The notion of theoretical strength, the critical stress at which a perfect crystal under uniform loading becomes structurally unstable, is extended to non-uniform loading. A position-dependent defect nucleation criterion has been derived and applied in molecular dynamics (MD) and finite-element simulations of dislocation emission in single-crystal nanoindentation. The resulting measure has the ...

متن کامل

Nanoindentation Induced Deformation Near Grain Boundaries of Corrosion Resistant Nickel Alloys Citation

The damage accumulation behavior of different grain boundary structures in Inconel 690 (Ni-29wt%Cr-9wt%Fe) was investigated in the presence of large, localized plastic strains induced by nanoindentation. Spatially-resolved hardness was measured as a function of lateral distance from ‘random’ high-angle grain boundaries and twin boundaries. The confinement of induced defects between the indenter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009